

EPFL

MICRO-517

Optical Design with ZEMAX OpticStudio

Lecture 6

04.11.2024

Ye Pu

Sciences et techniques de l'ingénieur École Polytechnique Fédérale de Lausanne CH-1015 Lausanne

Outline

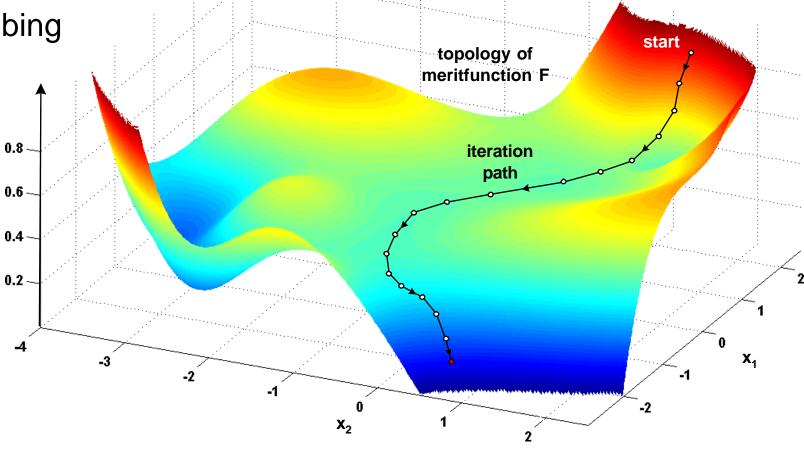
Theory

- Principle of nonlinear optimization
- Merit function and constraints
- Local and global optimization
- ZEMAX specifics

ZEMAX Practice

ZEMAX Optimization

The Lens Design Process



Defining a merit function

Iterative down climbing

in the topology

Mathematical description

n variable parameters $\mathbf{x} = x_i$ j = 1, 2, ..., n *m* target values $\mathbf{f}(\vec{x}) = f_i(x_j)$ i = 1, 2, ..., m

Jacobi system matrix of derivatives, Influence of a parameter change on the various target values, sensitivity function

of derivatives, Influence on the various target etion
$$\mathbf{J}_{ij} = \frac{\mathcal{O}f_i}{\partial x_j}$$
 Weight Extraction
$$F(\mathbf{x}) = \sum_{i=1}^m w_i \left[y_i - f_i \left(x_j \right) \right]^2$$

Gradient vector of topology $\mathbf{g}_j = \frac{\partial F}{\partial x_i}$

$$\mathbf{g}_{j} = \frac{\partial F}{\partial x_{j}}$$

Hesse matrix of 2nd derivatives $\mathbf{H}_{jk} = \frac{\partial^2 F}{\partial x_i \partial x_k}$

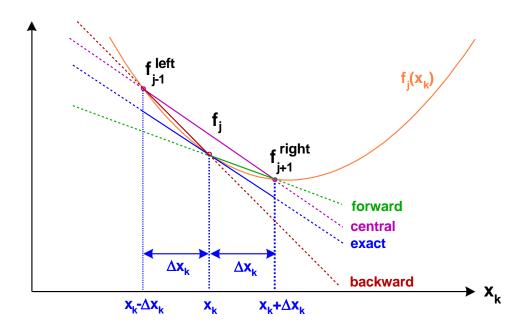
$$\mathbf{H}_{jk} = \frac{\partial^2 F}{\partial x_j \partial x_k}$$

- Linearize around working point with Taylor expansion of the target function
- Quadratic approximation of the merit function
- Solution by linear Algebra system matrix A
- Cases depending on the numbers of m and n
- Iterative numerical solution
 Strategy: optimization of direction
 and size of improvement step

$$\mathbf{f} = \mathbf{f}_0 + \mathbf{J} \cdot \Delta \mathbf{x}$$

$$F(\mathbf{x}) = F(\mathbf{x}_0) + \mathbf{J} \cdot \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x} \cdot \mathbf{H} \cdot \Delta \mathbf{x}$$

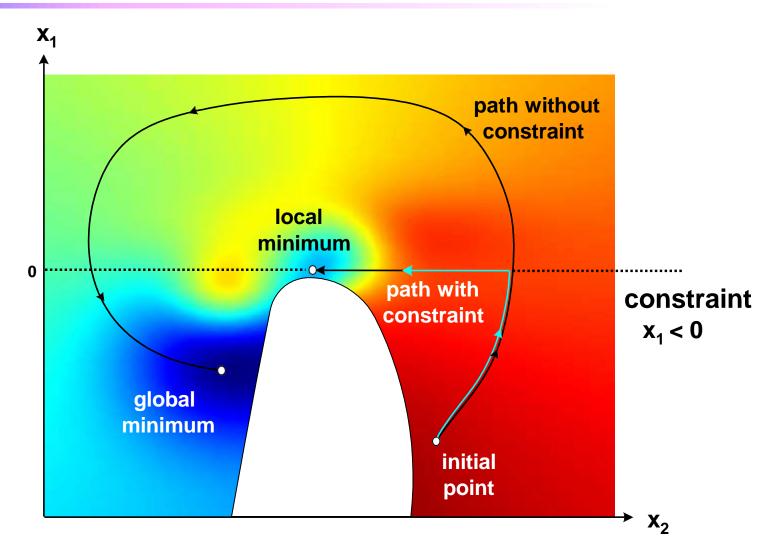
$$\mathbf{A}^{\dagger} = \begin{cases} \mathbf{A}^{-1} & \text{if m = n} \\ \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1} \cdot \mathbf{A}^{T} & \text{if m > n (under determined)} \\ \mathbf{A}^{T} \cdot \left(\mathbf{A}^{T}\mathbf{A}\right) & \text{if m < n (over determined)} \end{cases}$$



- Derivative vector in merit function topology: (Necessary for gradientbased methods)
- Numerical calculation by finite differences

Possibilities and accuracy

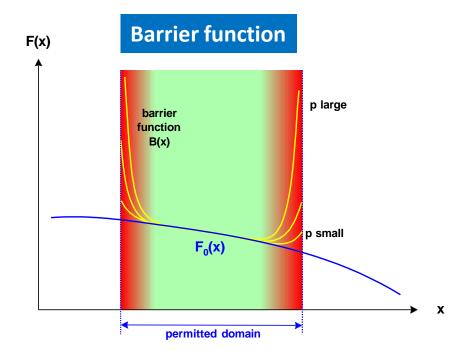
$$\mathbf{g}_{jk} = \frac{\partial f_j(\mathbf{x})}{\partial x_k} = \nabla_{x_k} f_j(\mathbf{x})$$


$$\mathbf{g}_{jk} = \frac{f_j^{right} - f_j}{\Delta x_k} \mid \mathbf{g}_{jk} = \frac{f_j - f_j^{left}}{\Delta x_k} \mid \mathbf{g}_{jk} = \frac{f_j^{right} - f_j^{left}}{2\Delta x_k}$$

Effects of Constraints

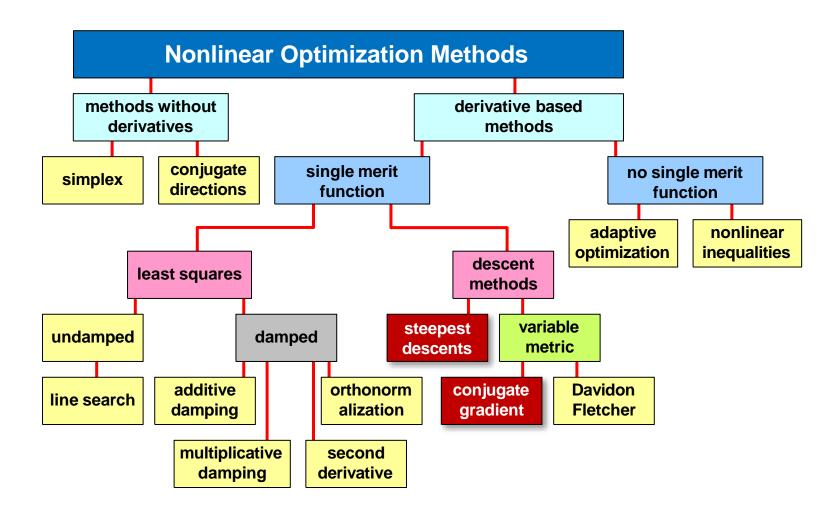
Effect of constraints

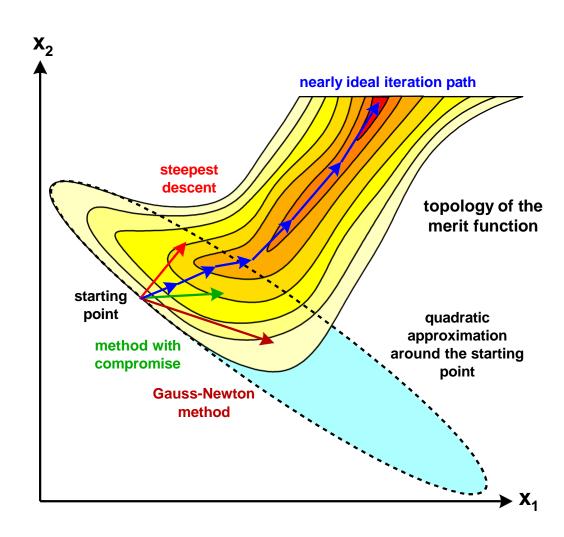

Boundary Conditions and Constraints


Types of constraints

- Equation, rigid coupling, pick up
- One-sided limitation, inequality
- Double-sided limitation, interval

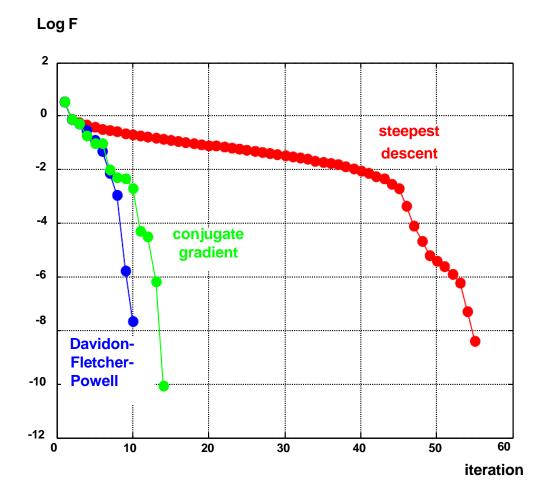
Numerical realizations


- Lagrange multiplier
- Penalty function
- Barrier function
- Regular variable, soft-constraint

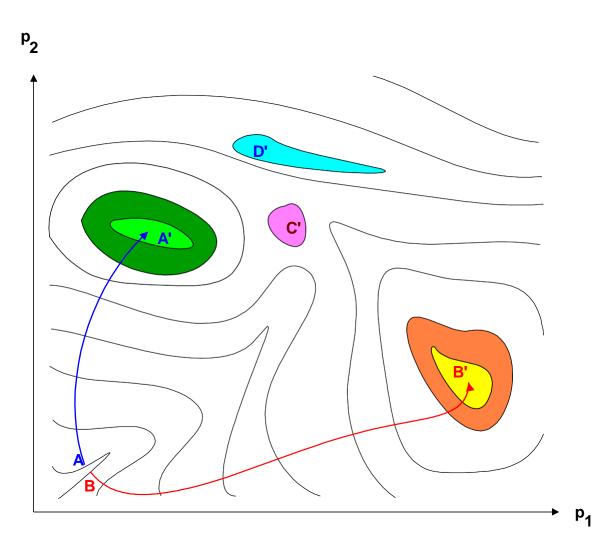

LIL LIL MICRO-517

Local Optimization Algorithms in Optics

LILL LILL MICRO-517

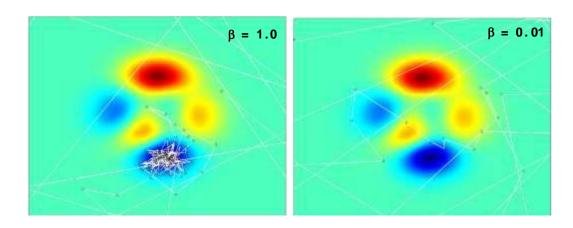

Searching the Local Minimum

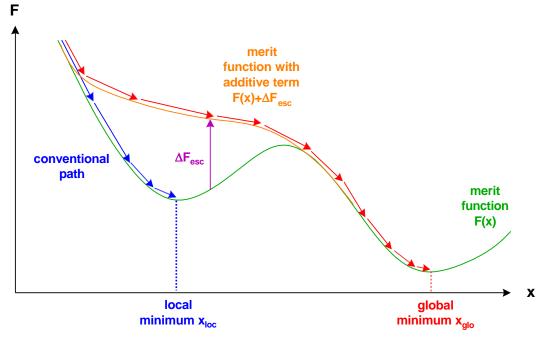
Convergence of Optimization


- Adaptation of direction and length of steps: rate of convergence
- Gradient method: slow due to zig-zag

Effects of Starting Point

- The initial starting point determines the outcome
- Only the next located solution without hill-climbing is found


Global Optimization: Simulated Annealing


Simulated Annealing: temporarily added term to overcome local minimum

Slow Cooling Temperature

$$\Delta F_{esc}(\vec{x}) = \Delta F_0 \cdot e^{-\beta \cdot [F(\vec{x}) - F_0]^2}$$

Optimization and adaptation of annealing parameters

Merit Function in Optical Design

- Goal of optimization: Find a system layout that meets the performance targets according of the specification
- Formulation of performance criteria must be created for:
 - Aperture rays
 - Field points
 - Wavelengths
 - Optional several zoom or scan positions
- Selection of performance criteria depends on application:
 - Ray aberrations
 - Spot diameter
 - Wave front error
 - Strehl ratio
 - Point spread function
 - Modulational transfer function
 - Uniformity of illumination

Usual scenario

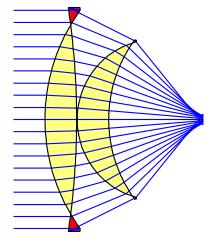
- Number of requirements and targets quite larger than available DOM
- Only compromised solutions possible

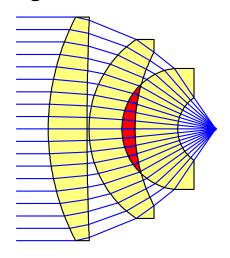
Parameters of Optical Systems

- Free variable parameters of the system:
 - Surface curvature radii
 - Thickness of lenses, air distances
 - Tilt and decenter
 - Free diameter of components
 - Material parameter, refractive indices and dispersion
 - Aspherical coefficients
 - Parameter of diffractive components
 - Coefficients of gradient media
- General experience:
 - Surface curvature radii very effective
 - Benefit of thickness and distances only weak
 - Material parameter can only be changes discretely

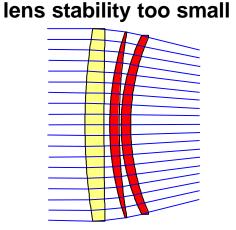
Constraints in Optical Systems

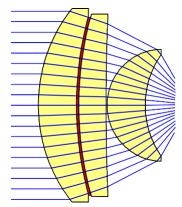
Constraints in the optimization of optical systems:


- Discrete standardized radii (tools, metrology)
- Discrete choice of glasses
- Edge thickness of lenses (handling)
- Center thickness of lenses(stability)
- Coupling of distances (zoom systems, forced symmetry, ...)
- Focal length, magnification, working distance
- Image location, pupil location
- Avoiding ghost images (no concentric surfaces)
- Use of given components (vendor catalog, availability, costs)

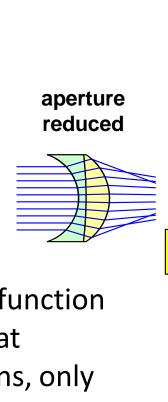

Insufficient Constraints in Optimization

Some useless results due to insufficient constraints

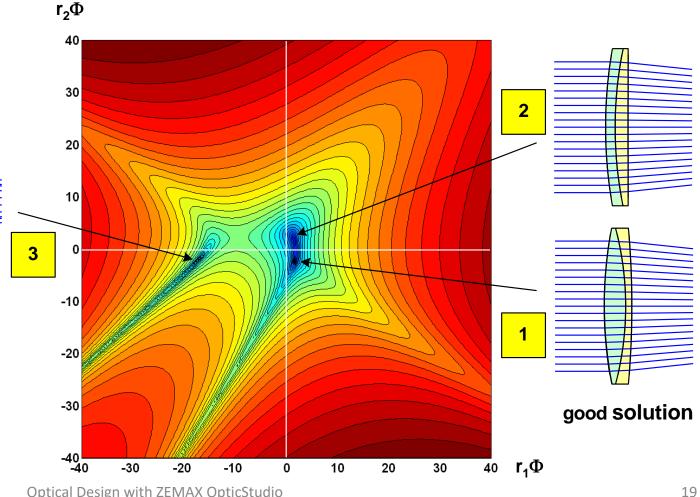

negative edge thickness


negative air distance

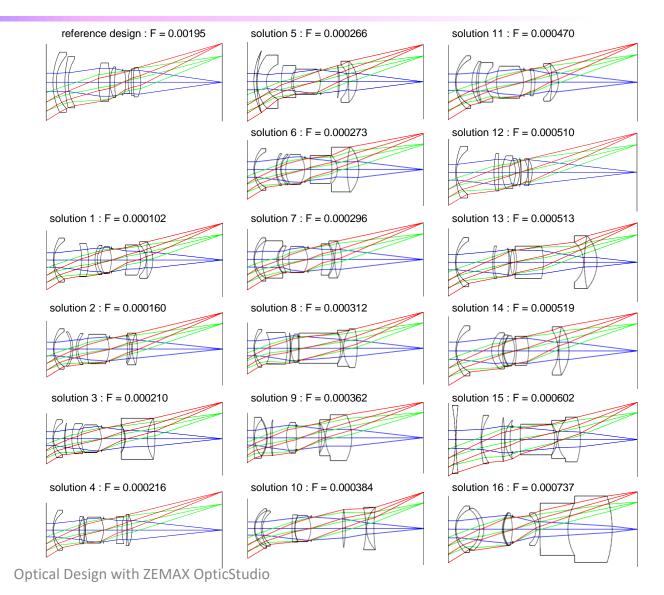
lens thickness too large



air space too small

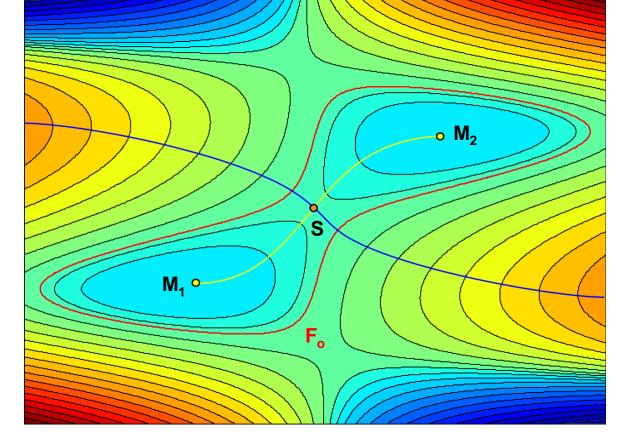


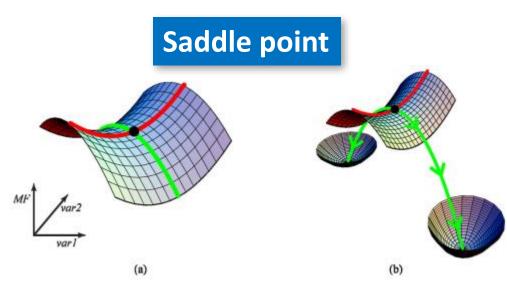
Optimization Landscape of an Achromat


- Typical merit function of an achromat
- Three solutions, only two are useful

Global Optimization

- No unique solution
- Insufficient constraints: unwanted lens shapes
- Many local minima with nearly the same performance

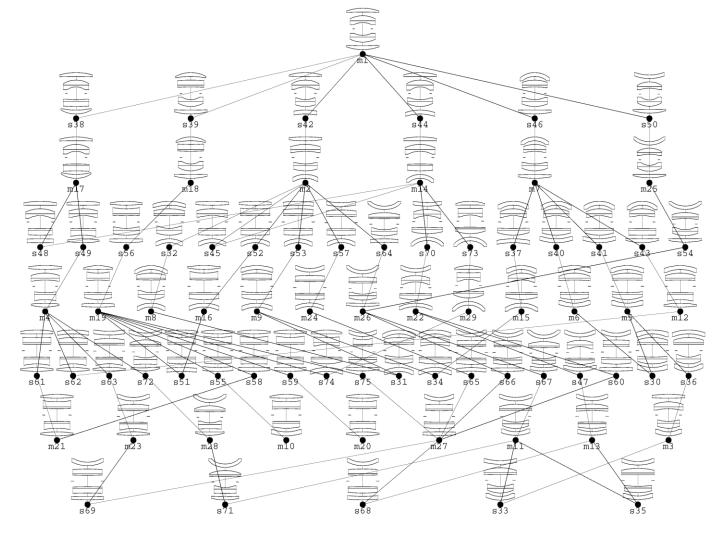




Saddle Point Method

- Systematic search of adjacend local minima is possible
- Exploration of the complete network of local minima via saddle points

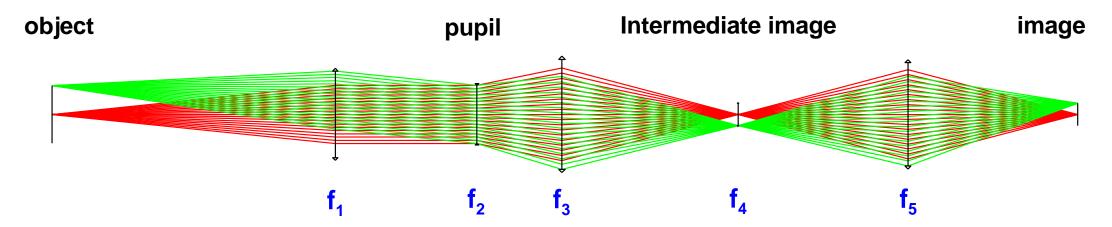
Saddle points in the merit function topology



Saddle Point Method


Network of local minima corresponding to a double Gauss global search

Material Optimization


- Special problem in glass optimization: finite area of definition with discrete parameters n, V
- Restricted permitted area as one possible constraint
- Model glass with continuous values of n, V in a pre-phase of glass selection, freezing to the next adjacent glass

Optimization: Where to Start

- Existing solution modified
- Literature and patent collections
- Paraxial layout + thin-lens predesign + surface model with correction

- Approach of Shafer: AC-surfaces, monochromatic, buried surfaces, aspherics
- Expert system / artificial intelligence
- Experience and genius

Correction Effectiveness

Effectiveness of correction features on aberration types

	, ,		Sphe	Coma	Astig	Field	Disto	5th C Sphe	LCA	TCA	Secol	Tertia Spect
Action	Lens Parameters	Lens Bending										
		Power Splitting										
		Power Combination										
		Distances										
		Stop Position										
	Material	Refractive Index										
		Dispersion										
		Relative Partial Dispersion										
		Gradient-Index										
	Special Surfaces	Cemented Surface										
		Aplanatic Surface										
		Aspherical Surface										
		Mirror										
		Diffractive Surface										
	Struc	Symmetry										
		Field Lens										

Primary

Aberration

5th

Chromatic

Makes a good impact
Makes a smaller impact
Makes a negligible impact
Zero influence

Different System, Different Concerns

- Telescope objective: longitudinal chromatic aberration, transverse chromatic aberration, spherical aberration, coma
- Collimator lens: longitudinal chromatic aberration, spherical aberration, coma
- Eyepieces: longitudinal chromatic aberration, transverse chromatic aberration, astigmatism, field curvature, maybe distortion (depending on the field of view)
- Camera lenses: all seven (and most certainly more for modern lenses)
- Microscope objective: both chromatic aberrations, spherical aberration, coma

Merit Function in ZEMAX OpticStudio

- Special merit function options can be composed:
 - sum, diff, prod, division,... of lines, which have a zero weight itself
 - mathematical functions sin, sqrt, max
 - less than, larger than (one-sided intervals as targets)
- Negative weights:
 - Requirement is considered as a Lagrange multiplier and is fulfilled exactly
 - Similar to a weight of infinity but numerically more stable
 - Useful to meet exact target like focal length or magnification
- Optimization operands with derivatives:
 - Building a system insensitive for small changes (wide tolerances)
- Further possibilities for user-defined operands:
 - Construction with macro language (ZPLM)
- General outline:
 - Use simple operands in a rough optimization phase
 - Use more complex, application-related operands in the final fine-tuning phase

Classical definition of the merit function in ZEMAX

$$F^{2} = \frac{\sum W_{i} \left(V_{i} - T_{i}\right)^{2}}{\sum W_{i}}$$

Final optimization:

- Do not optimize individual aberration coefficients
- Always optimize measurable quantities

Optimization Operands in ZEMAX OpticStudio

Important

If the number of field points, wavelengths, or configurations is changed, the merit function must be updated explicitly

Optimization Operand Definitions

ZEMAX supports optimization operands which are used to define the merit function. Each operand may be assigned a weight which indicates the relative importance of that operand, as well as a target, which is the desired value for that operand.

First-order optical properties:

AMAG, ENPP, EFFL, EFLX, EFLY, EPDI, EXPD, EXPP, ISFN, LINV, OBSN, PIMH, PMAG, POWF, POWP, POWR, SFNO, TFNO, WFNO

Aberrations:

ABCD, ANAC, ANAR, ANAX, ANAY, ANCX, ANCY, ASTI(, AXCL, BIOC, BIOD, BSER, COMA, DIMX, DISA, DISC, DISG, DIST, FCGS, FCGT, FCUR, LACL, LONA, OPDC, OPDM, OPDX, OSCD, PETC, PETZ, RSCE, RSCH, RSRE, RSRH, RWCE, RWCH, RWRE, RWRH, SPCH, SPHA, TRAC, TRAD, TRAE, TRAI, TRAX, TRAY, TRCX, TRCY, ZERN

MTF data:

GMTA, GMTS, GMTT, MSWA, MSWS, MSWT, MTFA, MTFS, MTFT, MTHA, MTHS, MTHT

PSF/Strehl Ratio Data:

STRH

Encircled energy:

DENC, DENF, ERFP, GENC, GENF, XENC, XENF

Constraints on lens data:

COGT, COLT, COVA, CTGT, CTLT, CTVA, CVGT, CVLT, CVVA, DMGT, DMLT, DMVA, ETGT, ETLT, ETVA, FTGT, FTLT, MNCA, MNCG, MNCT, MNCV, MNEA, MNEG, MNET, MNPD, MXCA, MXCG, MXCT, MXCV, MXEA, MXEG, MXET, MXPD, MNSD, MXSD, TTGT, TTHI, TTLT, TTVA, XNEA, XNET, XNEG, XXEA, XXEG, ZTHI

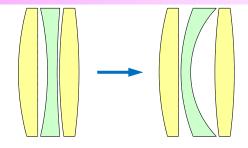
Constraints on lens properties:

CVOL, MNDT, MXDT, SAGX, SAGY, SSAG, STHI, TMAS, TOTR, VOLU, NORX, NORY, NORZ, NORD

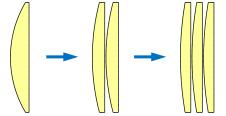
Constraints on parameter data:

PMGT, PMLT, PMVA

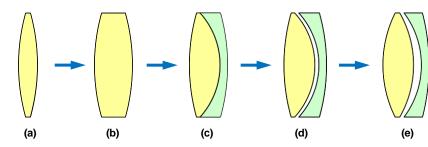
Optimization Strategy

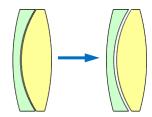

Options for accelerating a stagnated optimization:

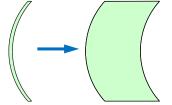
- Split a lens
- Insert a lens
- Increase refractive index of positive lenses
- Lower refractive index of negative lenses
- Make surface with large spherical surface contribution aspherical
- Break cemented components
- Use glasses with anomalous partial dispersion



Optimization Strategy


Lens bending

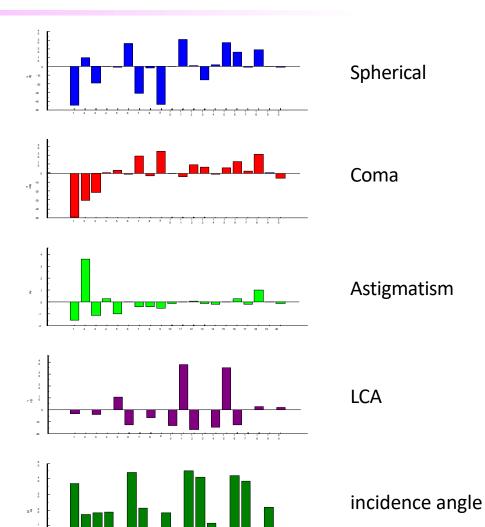

Lens splitting



Power combinations

Distances

Sensitivity of a System

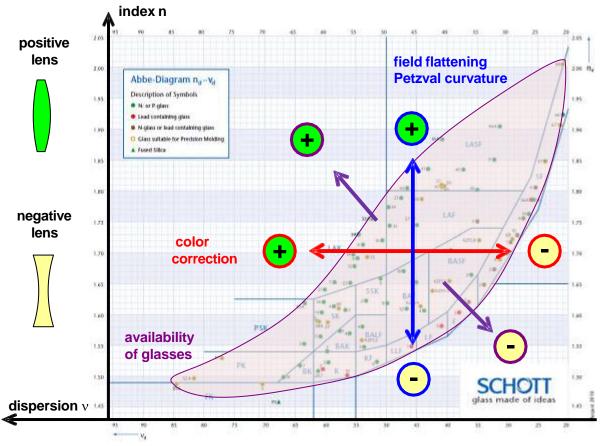

Quantitative measure for relaxation

$$A_i = \frac{h_i}{h_1} \frac{K_i}{K}$$

with normalization

$$\sum_{i=1}^{k} A_i = 1$$

- Non-relaxed surfaces:
 - Large incidence angles
 - Large ray bending
 - Large surface contributions of aberrations
 - Significant occurence of higher aberration orders
 - Large sensitivity for centering
- Internal relaxation can not be easily recognized in the total performance
- Large sensitivities can be avoided by incorporating surface contribution of aberrations into merit function during optimization


Glass Selection in Optical Optimization

Design Rules for glass selection

Different design goals:

- Color correction:Large dispersion difference
- Field flattening: Large index difference

ZEMAX can optimize Choices of Glasses too

Methods Available in ZEMAX OpticStudio

- General optimization methods
 - Local optimization
 - Global optimization
- Easy-one-dimensional optimizations
 - Quick focus
 - Adjustment
 - Slider, for visual control
- Special aspects:
 - Solves
 - Aspheres
 - Glass substitutes

Global optimization methods

- Global search:
 - Search the full parameter space subject to constraints
 - Good at finding promising design forms
 - Run indefinitely while saving the
 10 best systems found
- Hammer optimization:
 - Exhaustively search for optimum solution near a given starting point
 - May take a long time
 - Run indefinitely, must be stopped explicitly

Dogma in System Structure

- Even distribution of refractive power among component lenses
- High symmetry
- Cost:
 - long systems
 - many lenses

Homework

To be announced